Medullary Thyroid Cancer Cells in Calcitonin Gene Expression through Distinct Mechanisms The RET Kinase Inhibitor NVP-AST487 Blocks Growth and Updated Version

نویسندگان

  • Nagako Akeno-Stuart
  • Michelle Croyle
  • Jeffrey A. Knauf
  • Roberta Malaguarnera
  • Donata Vitagliano
  • Massimo Santoro
  • Christine Stephan
  • Konstantina Grosios
  • Markus Wartmann
  • Robert Cozens
  • Giorgio Caravatti
  • Doriano Fabbro
  • Heidi A. Lane
  • James A. Fagin
چکیده

The RET kinase has emerged as a promising target for the therapy of medullary thyroid cancers (MTC) and of a subset of papillary thyroid cancers. NVP-AST487, a N,N ¶-diphenyl urea with an IC50 of 0.88 Mmol/L on RET kinase, inhibited RET autophosphorylation and activation of downstream effectors, and potently inhibited the growth of human thyroid cancer cell lines with activating mutations of RET but not of lines without RET mutations. NVP-AST487 induced a dose-dependent growth inhibition of xenografts of NIH3T3 cells expressing oncogenic RET, and of the MTC cell line TT in nude mice. MTCs secrete calcitonin, a useful indicator of tumor burden. Human plasma calcitonin levels derived from the TT cell xenografts were inhibited shortly after treatment, when tumor volume was still unchanged, indicating that the effects of RET kinase inhibition on calcitonin secretion were temporally dissociated from its tumor-inhibitory properties. Accordingly, NVPAST487 inhibited calcitonin gene expression in vitro in TT cells, in part, through decreased gene transcription. These data point to a previously unknown physiologic role of RET signaling on calcitonin gene expression. Indeed, the RET ligands persephin and GDNF robustly stimulated calcitonin mRNA, which was blocked by pretreatment with NVP-AST487. Antagonists of RET kinase activity in patients with MTC may result in effects on plasma calcitonin that are either disproportionate or dissociated from the effects on tumor burden, because RET kinase mediates a physiologic pathway controlling calcitonin secretion. The role of traditional tumor biomarkers may need to be reassessed as targeted therapies designed against oncoproteins with key roles in pathogenesis are implemented. [Cancer Res 2007;67(14):6956–64]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RET kinase inhibitor NVP-AST487 blocks growth and calcitonin gene expression through distinct mechanisms in medullary thyroid cancer cells.

The RET kinase has emerged as a promising target for the therapy of medullary thyroid cancers (MTC) and of a subset of papillary thyroid cancers. NVP-AST487, a N,N'-diphenyl urea with an IC(50) of 0.88 mumol/L on RET kinase, inhibited RET autophosphorylation and activation of downstream effectors, and potently inhibited the growth of human thyroid cancer cell lines with activating mutations of ...

متن کامل

Targeting mTOR in RET mutant medullary and differentiated thyroid cancer cells.

Inhibitors of RET, a tyrosine kinase receptor encoded by a gene that is frequently mutated in medullary thyroid cancer, have emerged as promising novel therapies for the disease. Rapalogs and other mammalian target of rapamycin (mTOR) inhibitors are effective agents in patients with gastroenteropancreatic neuroendocrine tumors, which share lineage properties with medullary thyroid carcinomas. T...

متن کامل

Targeting the receptor tyrosine kinase RET in combination with aromatase inhibitors in ER positive breast cancer xenografts

The majority of breast cancers are estrogen receptor positive (ER+). Blockade of estrogen biosynthesis by aromatase inhibitors (AIs) is the first-line endocrine therapy for post-menopausal women with ER+ breast cancers. However, AI resistance remains a major challenge. We have demonstrated previously that increased GDNF/RET signaling in ER+ breast cancers promotes AI resistance. Here we investi...

متن کامل

ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases.

RET/papillary thyroid carcinoma (PTC) oncogenes, generated by recombination of the tyrosine kinase-encoding domain of RET with different heterologous genes, are prevalent in papillary carcinomas of the thyroid. Point mutations of RET cause multiple endocrine neoplasia type 2 (MEN2) familial cancer syndrome and are found in sporadic medullary thyroid carcinomas. Here, we show that ZD6474, a low ...

متن کامل

Cellular effects and antitumor activity of RET inhibitor RPI-1 on MEN2A-associated medullary thyroid carcinoma.

BACKGROUND The RET proto-oncogene encodes a receptor tyrosine kinase. RET oncogenes arise through sporadic and inherited gene mutations and are involved in the etiopathogenesis of medullary thyroid carcinoma, a cancer that responds poorly to conventional chemotherapy. Medullary thyroid carcinoma is a component of multiple endocrine neoplasia type 2 or MEN2 syndromes. METHODS We investigated t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007